
©2024 Databricks Inc. — All rights reserved

LLMs in
Enterprise

Nathan Azrak / Brian Law
June 11, 2024

1

©2024 Databricks Inc. — All rights reserved

Common issues with LLMs
in enterprise

Developing LLMs Data and training
infrastructure

2

AGENDA

• How do we decide if finetuning
is worth it?

• How do we serve such
expensive models?

• How do we finetuning with
sensitive training data?

• Evaluating your problem, when
to use LLMs

• Training frameworks

• Training data construction and
evaluation (case studies)

• The general developer flow

• Handling sensitive data for
model training

• Exploration versus
productionisation

• Cloud-agnostic training
pipelines

LLMs in production: development to deployment, and common questions

©2024 Databricks Inc. — All rights reserved

• When do we decide to train an LLM?
• High effort

• How to justify?

• How do we construct useful training data?
• How to create data for novel problems?

• How to evaluate beyond CE Loss?

• How do we serve large, expensive models at scale?

3

LLM Training Challenges
Training LLMs for production introduces many novel questions

©2024 Databricks Inc. — All rights reserved

• LLM finetuning is an uncertain process

• Effort is very high, with regards to:
• Refining training code

• Devising a dataset

• Designing an evaluation method

• Finetuning should generally be a last
resort

4

Strategic Leveraging of LLMs
How to justify the finetuning of Large Language Models

©2024 Databricks Inc. — All rights reserved

• Prioritise pragmatism, use trainers

• Start small and increase

• Prefer LoRA over full parameter

• Easier/cheaper to train

• Easier to deploy cheaply and
efficiently

• Big unlock for LLM-driven features
with low volume

5

Model finetuning
Guidelines for choosing a base model

©2024 Databricks Inc. — All rights reserved 6

Spectrum of LLM training frameworks
The tooling used depends on the size of the finetuning job

Single node, multi-GPUSingle node,
single GPU

Multi-node, multi-GPU

Full Parameter

LoRA

1B 70B+

Single node,
multi-GPU

Max servable LoRA size

Max servable full parameter size

You may have differing cost/latency
tolerances between adapters which
can share resources, and full
finetunes which require their own

FSDP

©2024 Databricks Inc. — All rights reserved

• Test full parameter training if it is
viable, continue if:

• Significant gap in performance

• feature is very high value or very high
volume

• Fix hyperparameters for final
candidate models, then iterate on
training + eval sets

7

Model finetuning
Zeroing in on a base model

Ability to overfit indicates sufficient complexity in training
parameters to learn the problem

©2024 Databricks Inc. — All rights reserved

● Dogfood prototype feature,
use user queries to generate
variants and training data

● LLM judges score results
○ Can create preference datasets,

or use best results for SFT
● Can use human judges in

future to create a subset
○ Metamodel on LLM judges to

estimate score calibrated with
human preference

Data Generation

8

Continuous improvement through automatic dataset generation

©2024 Databricks Inc. — All rights reserved

Code generation case study: overview

Case Study: Code Generation

Generate
training data

Model training Offline
evaluation

Deploy internally Review
customer
feedback

Creating useful
demonstrative
examples of the
language

Training a variety
of models from 7B
to 34B, LoRA and
full param

Evaluating using
offline metrics, and
summary analysis

Dogfooding to
Atlassian users to
test quality with
real users

Manually evaluate
written feedback

©2024 Databricks Inc. — All rights reserved 10

Case Study: Code Generation
Code generation case study: data generation process

Extract HTML docs

Generate input/output pairs,
with user queries (LLM)

Paraphrase and create variants
(LLM)

Combine inputs and outputs to
increase complexity (LLM)

Perform automated filter to
remove ambiguous queries
(LLM)

Manually filter
as needed

Process into json descriptors {
"name": "pow",
"inputs": [

{"name": "a", "type": "float"},
{"name": "pow", "type": "float"}

],
"output": {"type": "float"},
"description": "Returns `a` to the power `pow`.",
"examples": [{"code": "result = pow(2, 3)", "expected": "8"}
]

}

<!DOCTYPE html><html><head><title>Function
Documentation</title></head><body><h1>Power
Function</h1><p>def pow(a: float, pow: float) ->
float</p><p>Returns <code>a</code> to the power
<code>pow</code>.</p><h2>Example:</h2><pre>result = pow(2, 3)
Expected: 8</pre></body></html>

{“input”: “What is 2 to the power of 3?”, “output”: “pow(2.,
3.)”}

{“input”: “What is to to the power of 3 plus 20?”, “output”:
“add(pow(2., 3.), 20.)”}

“What is 2 to the power of 3?” -> “what’s 2 cubed?”

©2024 Databricks Inc. — All rights reserved

• Analysed failures by:
• Clustering inputs from failures

• Clustering model outputs from failures

• Manually analysing clusters for themes

• Restart loop, generating more
examples to counter failure cases

• Solving impossible queries
• Simple classifier or basic LLM call to filter

non-English or impossible queries

• Catch these before querying LLM

12

Code generation case study: evaluating fail cases

Case Study: Code Generation

©2024 Databricks Inc. — All rights reserved

ML Training Platform
Building a platform for safe, convenient ML development

• Platform built to secure customer data
while not prohibiting rapid
development

• Yaml-driven workflows assist with
reproducibility

• IAM and access controls are used to
limit access to sensitive data

©2024 Databricks Inc. — All rights reserved

• Model training takes ages and is a bit of a pain! Make it easy on yourself

• Make data generation code generic and extendable - your first dataset will
NOT be your last dataset

• Encourage version control and config-driven code

• Utilise an experiment tracker, and track package versions as well as run
configurations for reproducibility

14

Insights
Insights for model building and platform development

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 15

PRACTICAL
FINETUNING

©2024 Databricks Inc. — All rights reserved

• Have you tried advanced prompt engineering?

• Do you have samples of required inputs / outputs?

• Do you need very specific bespoke logic?

16

ANSWER THESE QUESTIONS FIRST
Quick spot check before you start!

©2024 Databricks Inc. — All rights reserved

- Most VRAM Efficient

- Not as performant if adding
new domain knowledge

THE VARIOUS TYPES OF TRAINING

17

LoRa/QLoRa Full Parameter Finetune Continued Pretrain

- Better performance than
LoRa

- Requires more time and GPU
compute

- Higher chance of forgetting

- Expensive and requires a lot
of data and gpu compute

- Critical for learning new:
- Languages
- Domains

- Chance of forgetting

When to use

©2024 Databricks Inc. — All rights reserved

- Most VRAM Efficient

- Not as performant if adding
new domain knowledge

THE VARIOUS TYPES OF TRAINING

18

LoRa/QLoRa Full Parameter Finetune Continued Pretrain

- Better performance than
LoRa

- Requires more time and GPU
compute

- Higher chance of forgetting

- Expensive and requires a lot
of data and gpu compute

- Critical for learning new:
- Languages
- Domains

- Chance of forgetting

When to use

©2024 Databricks Inc. — All rights reserved

The Finetuning Loop

19

Rehash from before

Generate
training data

Model training Offline
evaluation

Deploy internally Review
customer
feedback

©2024 Databricks Inc. — All rights reserved

The Finetuning Loop

20

Key Techniques

Generate
training data

Model training Offline
evaluation

Deploy internally Review
customer
feedback

Prompt
Engineering

Supervised
Finetuning

LLM as a
Judge

Model
Serving

Logging &
Analysis

©2024 Databricks Inc. — All rights reserved

The Finetuning Loop

21

The dataset and evaluations are key

Generate
training data

Model training Offline
evaluation

Deploy internally Review
customer
feedback

Prompt
Engineering

Supervised
Finetuning

LLM as a
Judge

Model
Serving

Logging &
Analysis

©2024 Databricks Inc. — All rights reserved

Common Questions

• How much?

• How to format?

• How to build?

22

SETTING UP YOUR DATA

Sorting out your dataset

Credit to xkcd

©2024 Databricks Inc. — All rights reserved

TYPES OF DATA

23

Raw Text - (https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/viewer/default/train?row=16)

©2024 Databricks Inc. — All rights reserved 24

TYPES OF DATA
Prompt - Response Data - (https://huggingface.co/datasets/mosaicml/instruct-v3?row=1)

©2024 Databricks Inc. — All rights reserved 25

TYPES OF DATA
Chat Dataset - (https://huggingface.co/datasets/erfanzar/ShareGPT4?row=5)

©2024 Databricks Inc. — All rights reserved

• Customer Q&A Pages

• Call Centre Logs

• Hand Crafted

• Synthetically Generated

26

HOW CAN WE MAKE DATA?
Data needs to be representative

Raw Data Prompt
Engineering

Prompt
Engineering

Prompt
Engineering

Common workflow

©2024 Databricks Inc. — All rights reserved

GENERATING SYNTHETIC DATA

27

We can use LLMs:

- To create sample questions
and associated answers

- To create synthetic examples
of a conversation

Most will do this

source: ragas source code
(https://github.com/explodinggradients/ragas
/blob/main/src/ragas/testset/prompts.py)

©2024 Databricks Inc. — All rights reserved

GENERATING SYNTHETIC DATA

28

Consider also:

- Answer Length

- Tone and syntax

- Thoroughness of answer

- Quality of the dataset

The full workflow

Raw Text Initial QnA

Refine /
filter re-
prompt

Train

Train / Eval Repeat

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 29

HOW MUCH DATA IS
ENOUGH?

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 30

YOU CAN START
WITH x00 BUT THE
MORE THE BETTER

©2024 Databricks Inc. — All rights reserved

ONTO THE TRAINING LOOP

31

Input Dataset
Formatting and
preprocessing

Main Train
Function

Logging and
Monitoring

JSONL

©2024 Databricks Inc. — All rights reserved

ONTO THE TRAINING LOOP

32

Input Dataset
Formatting and
preprocessing

Main Train
Function

Logging and
Monitoring

FSDP

©2024 Databricks Inc. — All rights reserved

ONTO THE TRAINING LOOP

33

Input Dataset
Formatting and
preprocessing

Main Train
Function

Logging and
Monitoring

©2024 Databricks Inc. — All rights reserved

Machine:

- 2x 24GB VRAM consumer
cards

- 128GB CPU RAM

Model:

- Llama 2 - 7B
- 2048 Context Length
- Batch Size 1

TRAINING TECHNIQUES

34

LET’S UNDERSTAND VRAM - (https://github.com/AnswerDotAI/fsdp_qlora/blob/main/benchmarks_03_2024.md)

©2024 Databricks Inc. — All rights reserved

Machine:

- 2x 24GB VRAM consumer
cards

- 128GB CPU RAM

Model:

- Llama 2 - 7B
- 2048 Context Length

TRAINING TECHNIQUES

35

LET’S UNDERSTAND VRAM - (https://github.com/AnswerDotAI/fsdp_qlora/blob/main/benchmarks_03_2024.md)

©2024 Databricks Inc. — All rights reserved

- Make sure model fits

- Use LoRa
- Can test QLoRa - check evals!

- Increment batch size till out of
RAM

- (Optional CPU Offload)

TRAINING TECHNIQUES

36

Navigating VRAM

©2024 Databricks Inc. — All rights reserved

- Language is complex

- Sentences have different lengths

- This is not good for nice matrix multiplications

UNDERSTANDING DATA PREPROCESSING

37

STEP 1 - Raw Data

©2024 Databricks Inc. — All rights reserved

- 128000, 14126, 374, 6485

- 128000, 32458, 2436, 617, 2204, 29416

- 128000, 2028, 374, 539, 1695, 369, 6555, 6303, 12842, 10939

UNDERSTANDING DATA PREPROCESSING

38

STEP 2 - Encode

©2024 Databricks Inc. — All rights reserved

- 128000, 14126, 374, 6485, 0, 0, 0, 0, 0, 0, 0, 0

- 128000, 32458, 2436, 617, 2204, 29416, 0, 0, 0, 0, 0, 0

- 128000, 2028, 374, 539, 1 695, 369, 6555, 6303, 12842, 10939, 0, 0

UNDERSTANDING DATA PREPROCESSING

39

STEP 3 - Pad

©2024 Databricks Inc. — All rights reserved

- 128000, 14126, 374, 6485, 0, 0, 0, 0, 0, 0, 0, 0

- 128000, 32458, 2436, 617, 2204, 29416, 0, 0, 0, 0, 0, 0

- 128000, 2028, 374, 539, 1 695, 369, 6555, 6303, 12842, 10939, 0, 0

UNDERSTANDING DATA PREPROCESSING

40

STEP 4 - Shard

GPU1

GPU2

GPU3

©2024 Databricks Inc. — All rights reserved

UNDERSTANDING MAIN TRAINING LOOP

41

1) Load Model

Layer 1

Layer 2

Layer 3

Layer 4

Layer n

- Load Weights from file

- Adjust Layers for
quantization / LoRa as
needed

- Move and Shard to GPU

©2024 Databricks Inc. — All rights reserved

UNDERSTANDING MAIN TRAINING LOOP

42

2) Configure / Load Rest of Parameters

Components to setup and configure:

- Optimizer

- Learning Rate Schedule

- ZeRo configs / Sharding configs

- Loss Calculations

©2024 Databricks Inc. — All rights reserved

UNDERSTANDING MAIN TRAINING LOOP

43

3) Monitor

Training Can be unstable:

- Loss Spikes

- Checkpointing issues

- Hardware failure

- Loss calc mistakes

©2024 Databricks Inc. — All rights reserved

Validate:

- Train loop runs

- Loss is decreasing as expected

- Checkpointing and logging
working

SCALING UP

44

Start with single GPU Move to Double Max out on one node (x8
first)

Validate:

- Distribution is happening

- Loss is still decreasing as
expected

- Logging and checkpointing
works distributed

After the previous tests, this should
just work.

How to speed up your training run:

©2024 Databricks Inc. — All rights reserved

Starting with Single Node
See: https://github.com/Data-drone/dais24_finetuning.git

TRAINING ON DATABRICKS

45

Use:

- Single Node MLR

- %sh or !python magics to
execute code

- Init_script for os level
dependencies

©2024 Databricks Inc. — All rights reserved

Expand with TorchDistributor / Deepspeed Distributor
See: https://github.com/Data-drone/dais24_finetuning.git

TRAIN LOOP ON DATABRICKS

46

Node 1

Node 2

GPU 1

GPU 2

GPU 1

GPU 2

Each GPU will have:
- Copy of weights
- Partial optimizer states
- Slice of data

©2024 Databricks Inc. — All rights reserved

- Learning Rate - ZeRo Stage

- Offload

- Batch Size / gradient accumulation

- Quantization

KEY SETTINGS & PARAMETERS

47

To get a better finetune To make things fit on GPU

That you need to know

©2024 Databricks Inc. — All rights reserved

- Learning Rate
- Explore these can be case specific

- Quantization
- 16bit is a given 8 / 4 do some testing

- ZeRo Stage / Sharding
- Use 3 generally / Full Shard

- Offload
- Hardware dependent

- Batch Size / gradient accumulation
- Adjust to make best use of VRAM but

leave a little buffer
- Use gradient accumulation if targeting

specific batch size

KEY SETTINGS & PARAMETERS

48

To get a better finetune To make things fit on GPU

That you need to know

©2024 Databricks Inc. — All rights reserved

- Have representative questions

- Test general knowledge too in
case of forgetting

- Make sure to test many topics
and question types

RUNNING EVALS

49

Accessing Success

©2024 Databricks Inc. — All rights reserved

To Scale:

- It is common to use LLM to
judge response

- LLM-as-a-Judge =/= customer
preferences!

- Be sure to calibrate

- Manual Work will be required

Typical Evals

50

Use LLM-as-a-Judge

©2024 Databricks Inc. — All rights reserved

The Finetuning Loop

51

A quick review

Generate
training data

Model training Offline
evaluation

Deploy internally Review
customer
feedback

Prompt
Engineering

Supervised
Finetuning

LLM as a
Judge

Model
Serving

Collect
feedback for

further
finessing

©2024 Databricks Inc. — All rights reserved

One Last thing

52

©2024 Databricks Inc. — All rights reserved

Coming soon!

53

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 54

Databricks
Finetuning

©2024 Databricks Inc. — All rights reserved

The Finetuning Loop

55

A quick review

Generate
training data

Model training Offline
evaluation

Deploy internally Review
customer
feedback

Databricks
Finetuning

©2024 Databricks Inc. — All rights reserved

Full SaaS Solution

- No GPU worries
- No scaling worries
- No Boilerplate Training Loop

One Simple API so that you can
focus on Data and Evals

Databricks Finetuning in a minute

56

©2024 Databricks Inc. — All rights reserved

Mosaic ML
Fine Tuning service

Fine Tune models on
your dataset Fine tuned in

Unity Catalog

Model Serving
GPU - realtime API

?
“How can I track

Databricks billing?”

“Here is how you can
easily track your billing: …”

dbdemos.install('llm-fine-tuning')

Try Mosaic AI & LLM Fine Tuning now!

Fine tune OSS models with your dataset

Open the demo page

https://www.databricks.com/resources/demos/tutorials/data-science/fine-tune-your-own-llm-on-databricks-for-specific-task-and-knowledge?itm_data=demo_center

	LLMs in Enterprise
	AGENDA
	LLM Training Challenges
	Strategic Leveraging of LLMs
	Model finetuning
	Spectrum of LLM training frameworks
	Model finetuning
	Data Generation
	Case Study: Code Generation
	Case Study: Code Generation
	Case Study: Code Generation
	ML Training Platform
	Insights
	PRACTICAL FINETUNING
	ANSWER THESE QUESTIONS FIRST
	THE VARIOUS TYPES OF TRAINING
	THE VARIOUS TYPES OF TRAINING
	The Finetuning Loop
	The Finetuning Loop
	The Finetuning Loop
	SETTING UP YOUR DATA
	TYPES OF DATA
	TYPES OF DATA
	TYPES OF DATA
	HOW CAN WE MAKE DATA?
	GENERATING SYNTHETIC DATA
	GENERATING SYNTHETIC DATA
	HOW MUCH DATA IS ENOUGH?
	YOU CAN START WITH x00 BUT THE MORE THE BETTER
	ONTO THE TRAINING LOOP
	ONTO THE TRAINING LOOP
	ONTO THE TRAINING LOOP
	TRAINING TECHNIQUES
	TRAINING TECHNIQUES
	TRAINING TECHNIQUES
	UNDERSTANDING DATA PREPROCESSING
	UNDERSTANDING DATA PREPROCESSING
	UNDERSTANDING DATA PREPROCESSING
	UNDERSTANDING DATA PREPROCESSING
	UNDERSTANDING MAIN TRAINING LOOP
	UNDERSTANDING MAIN TRAINING LOOP
	UNDERSTANDING MAIN TRAINING LOOP
	SCALING UP
	TRAINING ON DATABRICKS
	TRAIN LOOP ON DATABRICKS
	KEY SETTINGS & PARAMETERS
	KEY SETTINGS & PARAMETERS
	RUNNING EVALS
	Typical Evals
	The Finetuning Loop
	One Last thing
	Coming soon!
	Databricks Finetuning
	The Finetuning Loop
	Databricks Finetuning in a minute
	Try Mosaic AI & LLM Fine Tuning now!

