

LLMs in Enterprise

LLMs in production: development to deployment, and common questions

Common issues with LLMs in enterprise

- How do we decide if finetuning is worth it?
- How do we serve such expensive models?
- How do we finetuning with sensitive training data?

Developing LLMs

- Evaluating your problem, when to use LLMs
- Training frameworks
- Training data construction and evaluation (case studies)
- The general developer flow

Data and training infrastructure

- Handling sensitive data for model training
- Exploration versus productionisation
- Cloud-agnostic training pipelines

LLM Training Challenges

Training LLMs for production introduces many novel questions

- When do we decide to train an LLM?
 - High effort
 - How to justify?
- How do we construct useful training data?
 - How to create data for novel problems?
 - How to evaluate beyond CE Loss?
- How do we serve large, expensive models at scale?

Strategic Leveraging of LLMs How to justify the finetuning of Large Language Models

- LLM finetuning is an uncertain process
- Effort is very high, with regards to:
 - Refining training code
 - Devising a dataset
 - Designing an evaluation method
- Finetuning should generally be a last resort

Model finetuning

Guidelines for choosing a base model

- Prioritise pragmatism, use trainers
- Start small and increase
- Prefer LoRA over full parameter
- Easier/cheaper to train
- Easier to deploy cheaply and efficiently
- Big unlock for LLM-driven features with low volume

5

Spectrum of LLM training frameworks

The tooling used depends on the size of the finetuning job

6

Model finetuning

Zeroing in on a base model

Ability to overfit indicates sufficient complexity in training parameters to learn the problem

- Test full parameter training if it is viable, continue if:
 - Significant gap in performance
 - feature is very high value or very high volume
- Fix hyperparameters for final candidate models, then iterate on training + eval sets

Data Generation

Continuous improvement through automatic dataset generation

- Dogfood prototype feature, use user queries to generate variants and training data
- LLM judges score results
 - O Can create preference datasets, or use best results for SFT
- Can use human judges in future to create a subset
 - O Metamodel on LLM judges to estimate score calibrated with human preference

Case Study: Code Generation

Code generation case study: overview

Case Study: Code Generation

Code generation case study: data generation process

Case Study: Code Generation

Code generation case study: evaluating fail cases

- Analysed failures by:
 - Clustering inputs from failures
 - Clustering model outputs from failures
 - Manually analysing clusters for themes
- Restart loop, generating more examples to counter failure cases
- Solving impossible queries
 - Simple classifier or basic LLM call to filter non-English or impossible queries
 - Catch these before querying LLM

ML Training Platform

Building a platform for safe, convenient ML development

- Platform built to secure customer data while not prohibiting rapid development
- Yaml-driven workflows assist with reproducibility
- IAM and access controls are used to limit access to sensitive data

Insights

Insights for model building and platform development

- Model training takes ages and is a bit of a pain! Make it easy on yourself
- Make data generation code generic and extendable your first dataset will NOT be your last dataset
- Encourage version control and config-driven code
- Utilise an experiment tracker, and track package versions as well as run configurations for reproducibility

PRACTICAL FINETUNING

ANSWER THESE QUESTIONS FIRST

Quick spot check before you start!

• Have you tried advanced prompt engineering?

• Do you have samples of required inputs / outputs?

• Do you need very specific bespoke logic?

THE VARIOUS TYPES OF TRAINING

When to use

LoRa/QLoRa

- Most VRAM Efficient
- Not as performant if adding new domain knowledge

Full Parameter Finetune

- Better performance than LoRa
- Requires more time and GPU compute
- Higher chance of forgetting

Continued Pretrain

- Expensive and requires a lot of data and gpu compute
- Critical for learning new:
 - Languages
 - Domains
- Chance of forgetting

THE VARIOUS TYPES OF TRAINING

When to use

LoRa/QLoRa

- Most VRAM Efficient
- Not as performant if adding new domain knowledge

Full Parameter Finetune

- Better performance than LoRa
- Requires more time and GPU compute
- Higher chance of forgetting

Continued Pretrain

- Expensive and requires a lot of data and gpu compute
- Critical for learning new:
 - Languages
 - Domains
- Chance of forgetting

Rehash from before

Key Techniques

The dataset and evaluations are key

SETTING UP YOUR DATA

Sorting out your dataset

Common Questions

- How much?
- How to format?
- How to build?

22

TYPES OF DATA

Raw Text - (https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu/viewer/default/train?row=16)

📄 Datasets: 🚱 HuggingFaceFW / fineweb-edu 🖆 🛇 like 158 🔍 Dataset card 🖽 Viewer 📲 Files and versions 🥔 Community 🗗						
Subset (99) default · 1.28B rows			Split (1) train + 1.28B rows			
text string · <i>lengths</i> 150-59.3k 99.6%	id string · <i>lengths</i> 47 100%	dump string · classes	url string · lengths 4 14-98 84.2%	file_path string · lengths 138 100%		
Wikipedia sobre física de partículas Rapidinho. Me falaram que a definição de física de partículas da…	<urn:uuid:e7f0a003- 07f1-4148-a77c</urn:uuid:e7f0a003- 	CC-MAIN-2013-20	<pre>http://arsphysica.wordpress.com/2011/08/14/wikiped ia-sobre-fisica-de-particulas/</pre>	s3://commoncrawl/crawl-data/CC- MAIN-2013		
- published: 19 Mar 2013 - views: 42 - author: T.A. B possibly testing on weans, that worries me http://www.bbc.co.uk/news/world-us-canada-21849808. A vaccine is a biological preparation that improves immunity to a particular disease. A vaccine typically contains an agent that resembles a disease-causing microorganism, and is often made from weakened or killed forms of the microbe, its toxins or one of its surface proteins. The agent stimulates the body's immune system to recognize the agent as foreign, destroy it, and "remember" it, so that the immune system can more easily recognize and destroy any of these microorganisms that it later encounters. Vaccines can be prophylactic (example: to prevent or ameliorate the effects of a future infection by any natural or "wild" pathogen), or therapeutic (e.g. vaccines against cancer are also being investigated; see cancer vaccine). The term vaccine derives from Edward Jenner's 1796 use of cow pox (Latin variola vaccain, adapted from the Latin vaccin-us, from vacca, cow), to incoulate humans, providing them protection against smallpox. Vaccines do not guarantee complete protection from a disease. Sometime: this is because the bact's immune system	<urn:uuid:049ed48d- f01e-4fc9-846b- 2e2c5e6c254d></urn:uuid:049ed48d- 	CC-MAIN-2013-20	http://article.wn.com/view/2013/01/16/Vaccine_time table_for_children_is_safe_US_experts_say_t/	s3://commoncrawl/crawl-data/CC- MAIN-2013- 20/segments/1368696381249/warc/CC- MAIN-20130516092621-00000-ip-10- 60-113-184.ec2.internal.warc.gz		

TYPES OF DATA

Prompt - Response Data - (https://huggingface.co/datasets/mosaicml/instruct-v3?row=1)

Dataset Viewer	S <u>Auto-converted</u> to Parquet	C Auto-converted to Parquet 🐶 API 🖽 View in Dataset Viewer				
Split (2) train · 56.2k rows	~					
Q Search this dataset						
<pre>prompt string · lengths 142017.1k 91.9%</pre>	response string · lengths 1⊖2.6k 99.6%	<pre>source string · classes dolly_hhrl 61.1%</pre>				
Below is an instruction that describes a task. Write a response that appropriately completes the request. #### Instruction What are different types of grass? #### Response	There are more than 12,000 species of grass. The most common is Kentucky Bluegrass, because it grows quickly, easily, and is soft to the touch. Rygrass is shiny and bright green colored. Fescues are dark green and shiny. Bermuda grass is harder but can grow in drier soil.	dolly_hhrlhf				

TYPES OF DATA

Chat Dataset - (https://huggingface.co/datasets/erfanzar/ShareGPT4?row=5)

```
"role": "user".
 "value": "act as an expert pharmacologist. explain to a physician the potential interactions of the medications named here:\n\n Wellbutrin XL to 150 mg daily for atte
 "role": "assistant".
 "value": "As a pharmacologist, I would like to bring to your attention some potential drug interactions and considerations among the medications listed for this patie
},
 "role": "user", "value": "include gabapentin" },
 "role": "assistant".
 "value": "Adding gabapentin to the patient's medication regimen introduces the following considerations and potential interactions:\n\n1. Gabapentin and Cymbalta (dul
 "role": "user",
 "value": "can wellbutrin contribute to the risk of seratonin syndrome"
 "role": "assistant",
 "value": "I apologize for the confusion in my previous response. While Wellbutrin (bupropion) is not typically associated with an increased risk of serotonin syndrome
 "role": "user",
 "value": "which of these medications contribute to seratonin syndrome risk"
Ъ.
 "role": "assistant",
 "value": "I apologize for any confusion. Of the medications listed for the patient, Cymbalta (duloxetine) is the primary one associated with an increased risk of sero
ł.
 "role": "user", "value": "doesn't trazodone?" },
 "role": "assistant".
 "value": "You are correct, and I apologize for the oversight. Trazodone is indeed another medication in the patient's list that can contribute to the risk of serotoni
```

HOW CAN WE MAKE DATA?

Data needs to be representative

- Customer Q&A Pages
- Call Centre Logs
- Hand Crafted
- Synthetically Generated

GENERATING SYNTHETIC DATA

Most will do this

We can use LLMs:

- To create sample questions and associated answers
- To create synthetic examples of a conversation

seed question prompt = Prompt(name="seed question". instruction="Generate a question that can be fully answered from given context. The question should be formed using topic", examples=["context": "Photosynthesis in plants involves converting light energy into chemical energy, using chlorophyll and ot "keyphrase": "Photosynthesis". "question": "What is the role of photosynthesis in plant growth?", "context": "The Industrial Revolution, starting in the 18th century, marked a major turning point in history as it "keyphrase": "Industrial Revolution", "question": "How did the Industrial Revolution mark a major turning point in history?", "context": "The process of evaporation plays a crucial role in the water cycle, converting water from liquid to vapo "keyphrase": "Evaporation". "guestion": "Why is evaporation important in the water cycle?", input_keys=["context", "keyphrase"], output key="guestion", output_type="str", source: ragas source code (https://github.com/explodinggradients/ragas /blob/main/src/ragas/testset/prompts.py)

GENERATING SYNTHETIC DATA

The full workflow

Consider also:

- Answer Length
- Tone and syntax
- Thoroughness of answer
- Quality of the dataset

HOW MUCH DATA IS ENOUGH?

YOU CAN START WITH x00 BUT THE MORE THE BETTER

ONTO THE TRAINING LOOP

ONTO THE TRAINING LOOP

ONTO THE TRAINING LOOP

TRAINING TECHNIQUES

LET'S UNDERSTAND VRAM - (https://github.com/AnswerDotAl/fsdp_glora/blob/main/benchmarks_03_2024.md)

Machine:

- 2x 24GB VRAM consumer cards
- 128GB CPU RAM

Model:

- Llama 2 7B _
- 2048 Context Length
- Batch Size 1 _

34

TRAINING TECHNIQUES

LET'S UNDERSTAND VRAM - (https://github.com/AnswerDotAl/fsdp_qlora/blob/main/benchmarks_03_2024.md)

Machine:

- 2x 24GB VRAM consumer cards
- 128GB CPU RAM

Model:

- Llama 2 7B _
- 2048 Context Length

35

TRAINING TECHNIQUES

Navigating VRAM

- Make sure model fits
- Use LoRa
 - Can test QLoRa check evals!
- Increment batch size till out of RAM
 - (Optional CPU Offload)

UNDERSTANDING DATA PREPROCESSING STEP 1 - Raw Data

- Language is complex

- Sentences have different lengths

- This is not good for nice matrix multiplications

UNDERSTANDING DATA PREPROCESSING

STEP 2 - Encode

- 128000, 14126, 374, 6485

- 128000, 32458, 2436, 617, 2204, 29416

- 128000, 2028, 374, 539, 1695, 369, 6555, 6303, 12842, 10939

UNDERSTANDING DATA PREPROCESSING STEP 3 - Pad

- 128000, 14126, 374, 6485, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

- 128000, 32458, 2436, 617, 2204, 29416, 0, 0, 0, 0, 0, 0, 0

- 128000, 2028, 374, 539, 1695, 369, 6555, 6303, 12842, 10939, 0, 0

UNDERSTANDING DATA PREPROCESSING

STEP 4 - Shard

UNDERSTANDING MAIN TRAINING LOOP 1) Load Model

- Load Weights from file

 Adjust Layers for quantization / LoRa as needed

- Move and Shard to GPU

UNDERSTANDING MAIN TRAINING LOOP

2) Configure / Load Rest of Parameters

<pre>sf train_one_epoch(epoch_index, tb_writer):</pre>	Q
<pre>last_loss = 0.</pre>	
# Hare we use enumerate(training loader) instead of	
# iter(training loader) so that we can track the batch	
# index and do some intra-epoch reporting	
for i, data in enumerate(training loader):	
# Every data instance is an input + label pair	
inputs, labels = data	
• •	
# Zero your gradients for every batch!	
optimizer.zero_grad()	
# Make predictions for this batch	
<pre>outputs = model(inputs)</pre>	
<i># Compute the loss and its gradients</i>	
<pre>loss = loss_fn(outputs, labels)</pre>	
loss.backward()	
# Adjust learning weights	
optimizer.step()	
<i>♯ Gather data and report</i>	
<pre>running_loss += loss.item()</pre>	
if i % 1000 == 999:	
<pre>last_loss = running_loss / 1000 # loss per batch</pre>	
<pre>print(' batch {} loss: {}'.format(i + 1, last_loss))</pre>	
<pre>tb_x = epoch_index * len(training_loader) + i + 1</pre>	
tb_writer.add_scalar('Loss/train', last_loss, tb_x)	
running_loss = U.	
return last loss	
16.011 1831_1035	

Components to setup and configure:

- Optimizer

- Learning Rate Schedule
- ZeRo configs / Sharding configs

- Loss Calculations

42

UNDERSTANDING MAIN TRAINING LOOP

3) Monitor

Training Can be unstable:

- Loss Spikes
- Checkpointing issues
- Hardware failure

- Loss calc mistakes

DATA⁺AI SUMMIT

SCALING UP

How to speed up your training run:

Start with single GPU

Validate:

- Train loop runs
- Loss is decreasing as expected
- Checkpointing and logging working

Move to Double

Validate:

- Distribution is happening -
- Loss is still decreasing as expected

After the previous tests, this should just work.

Max out on one node (x8

first)

Logging and checkpointing works distributed

TRAINING ON DATABRICKS

Starting with Single Node

See: https://github.com/Data-drone/dais24_finetuning.git

Cancelled	5	Python	Û	∻	53	:
!python train.py ∖						
model name meta-llama/Meta-L	lama–3– <mark>8B</mark> –Instruct ∖					
batch size 10 \						
context length 512 \						
precision bf16 \						
train type glora \						
dataset alpaca \						
uataset atpaca (
reentrant_checkpointing true						
World size: 4						
tokenizer_config.json: 100%	51.0k/51.0k [00:00<00:0	0, 347kB/	s]			- I
tokenizer.json: 100%	9.09M/9.09M [00:01<00:00	, 9.04MB/	s]			
<pre>special_tokens_map.json: 100%</pre>	73.0/73.0 [00:00<00:0	0, 663kB/	s]			
Special tokens have been added i	n the vocabulary, make sure the assoc	iated wor	d emb	eddi	ngs	a
re fine-tuned or trained.						
Special tokens have been added i	n the vocabulary, make sure the assoc	iated wor	d emb	eddi	ngs	a
re fine-tuned or trained.						
Special tokens have been added i	n the vocabulary, make sure the assoc	iated wor	d emb	eddi	ngs	a
re fine-tuned or trained.						
Special tokens have been added i	n the vocabulary, make sure the assoc	iated wor	d emb	eddi	ngs	a
re fine-tuned or trained.						
Downloading readme: 100%	11.6k/11.6k [00:00<00:00	, 62.0MB/	s]			
Downloading data: 0%	0.00/44.3M [00:	00 , ?B/:</td <td>s]</td> <td></td> <td></td> <td></td>	s]			
Downloading data: 9%	4.19M/44.3M [00:00<00:03	, 13.1MB/	s]			

Use:

- Single Node MLR
- %sh or !python magics to execute code
- Init_script for os level dependencies

TRAIN LOOP ON DATABRICKS

Expand with TorchDistributor / Deepspeed Distributor

See: https://github.com/Data-drone/dais24_finetuning.git

KEY SETTINGS & PARAMETERS

That you need to know

To get a better finetune

- Learning Rate

To make things fit on GPU

- ZeRo Stage
- Offload
- Batch Size / gradient accumulation
- Quantization

KEY SETTINGS & PARAMETERS

That you need to know

To get a better finetune

- Learning Rate
 - Explore these can be case specific

To make things fit on GPU

- Quantization
 - 16bit is a given 8 / 4 do some testing
- ZeRo Stage / Sharding
 - Use 3 generally / Full Shard
- Offload
 - Hardware dependent
- Batch Size / gradient accumulation
 - Adjust to make best use of VRAM but leave a little buffer
 - Use gradient accumulation if targeting specific batch size

48

RUNNING EVALS

Accessing Success

- Have representative questions
- Test general knowledge too in case of forgetting
- Make sure to test many topics and question types

Typical Evals

Use LLM-as-a-Judge

To Scale:

- It is common to use LLM to judge response
- LLM-as-a-Judge =/= customer preferences!
 - Be sure to calibrate
- Manual Work will be required

A quick review

One Last thing

Coming soon!

Databricks Finetuning

A quick review

Databricks Finetuning in a minute

Full SaaS Solution

- No GPU worries
- No scaling worries
- No Boilerplate Training Loop

One Simple API so that you can focus on **Data** and **Evals**

```
Python
from databricks.model_training import foundation_model as fm
run = fm.create(
    model="databricks/dbrx-base",
    train_data_path="dbfs:/Volumes/main/mydirectory",
    register_to="main.mydirectory.myname"
    training_duration="1ep",
    learning_rate="5e-7",
)
```

Try Mosaic AI & LLM Fine Tuning now!

Fine tune OSS models with your dataset

dbdemos.install('llm-fine-tuning')

Currently US Regions Only